Prevention of Indomethacin - Induced Gastric Ulcers in Rats by Extract from Leaves of Centella asiatica

Kittisak Sripanidkulchai, Ph.D.*, Nawaporn Techataweewan, M.D.*, Yanyong Tumsan, M.Sc.*, Wanusanun Pannangrong, M.Sc.*, Bungorn Sripanidkulchai, Ph.D.**

*Department of Anatomy, Faculty of Medicine, **Department of Pharmaceutical Chemistry and Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Correspondence to: Bungorn Sripanidkulchai
E-mail: bungorn@kku.ac.th

ABSTRACT

Objective: The aim of this study is to investigate the protective effect of Centella asiatica extract on gastric ulcers caused by indomethacin in rats.

Methods: Male rats were orally given extract of C.asiatica prior to the administration of indomethacin. The stomach was dissected and the number of bleeding spots and histological features were determined.

Results: Giving extract of C.asiatica at doses of 10 and 20 mg/kg for 30 minutes prior to oral administration of indomethacin decreased the number of bleeding spots are about 11 times lower than those given indomethacin alone. Histological findings of indomethacin-treated group showed the depth of injury of gastric mucosa which is about half the thickness of the mucosal layer. Treatment with C.asiatica decreased the depth of tissue erosion, down to one-third of the thickness of the mucosa.

Conclusion: The results showed protective effect of C.asiatica on gastric ulceration caused by the anti-inflammatory drug, indomethacin.

Keywords: Centella asiatica; gastric ulcer; indomethacin

Siriraj Med J 2007; 59: 122-124
E-journal: http://www.sirirajmedj.com

Centella asiatica (Linn.) is known as Indian Pennywort or Buobok in Thai. It is a perennial herba-ceous creeper of the Apiaceae family that is commonly found in abundance on moist, sandy or clay soils. It has been used for centuries as medicinal herb for the treatment of several conditions including wounds and injuries.1,2 Chemically, C.asiatica contains triterpenoids and their glycosides include asiaticoside, asiatic acid, madecassoside, madecassic acid, brahmoside, brahminoside and centelloside.3,4 previous studies reported anti-gastric ulcer, antitumor, antioxidant, immunomodulatory activities of C.asiatica.5-8 However, previous studies of the plant’s effect on gastric ulceration were done by using various inducers but not indomethacin.9,10 So this study aims to investigate the effect of the plant extract on gastric injury caused by in-domethacin according to its common use as anti-inflammatory drug.

MATERIALS AND METHODS

Chemicals
Indomethacin (Fluka, Switzerland); eosin, hematoxylin (Merck, Germany); Pentothal sodium (Abbott, Italy); sodium chloride injection (Thainakornpatana Co, Thailand); Tween 80 (Sigma, USA).

Plant extract
Aqueous extract of C.asiatica leaves was prepared by the Center for Research and Development of Herbal Health Products, Khon Kaen University. Briefly, fresh leaves of C.asiatica were blended in water, filtered and dried by freeze dryer (Renown Tech Co, Model 102161). The yield was 1.8%.

Animals and experimental design
Sprague-Dawley rats (250-300g weight) were obtained from the Animal Center, Faculty of Medicine, Khon Kaen University. The animals were kept in dark-light cycle for 12 hours at 25°C for 7 days. Before starting the experiments,
the animals were fast for 12 hours and divided into 4 groups (n=8), then they were orally administered as follows: Groups 1, indomethacin (20 mg/kg) in 0.1% Tween 80; Group 2 and 3, extract of C. asiatica in water at the doses of 10 and 20 mg/kg 30 minutes prior to giving indomethacin; Group 4, 0.5 ml of 0.1% Tween 80.

Six hours after the treatment, the animal was killed by intraperitoneally injected with 60 mg/kg pentothal sodium and the abdomen was opened. The stomach was removed, cut along the greater curvature and washed with normal saline solution. The opened stomach was fixed on a paraffin plate and measured for the bleeding spots. The ratio and % of the bleeding area were determined by image analyzer (UTHSCSA image tool for version 3.00) and % of bleeding area was determined. Histological examination of the stomach was performed by paraffin section at 5μ thickness and stained with hematoxylin and eosin.12-13 All data on tissue erosion were obtained from the photographs taken from microscope with open study method.

Statistical analysis
The data were expressed as mean ± SD. One-way analysis of variance followed by multiple comparison tests were used to access statistical significance of differences between groups.

RESULTS

Bleeding of stomach

An administration of indomethacin (20 mg/kg dissolved in 0.1% Tween 80) induced 12.13±5.84 bleeding spots of gastric mucosa with area of bleeding of 0.15±0.12 mm², whereas the control group (giving 0.5 ml of 0.1% Tween 80) showed 0.63±0.74 bleeding spots. Receiving the extract of C. asiatica leaves 30 minutes prior to indomethacin can significantly decrease the number of bleeding spots downs to 0.63±0.52 and 1.00±1.20 spots for 10 and 20 mg/kg doses, respectively. The % of bleeding areas of these animals were close to the value of control animals. (Table 1, Fig 1).

Histological examination of stomach

The stomach of indomethacin-treated animals showed ulceration in the mucosa. By measuring from the photographs, the depth of mucosal erosion was about half of the thickness (Fig 2A). Some epithelial cells did not have nucleus, which suggested cell death. Red blood cells and polymorphonuclear cells were found, which represented the tissue inflammation (Fig 2B). These inflammatory features were not seen in the control group (receiving 0.1% Tween 80). Receiving 10 and 20 mg/kg of C. asiatica extracts can prevent bleeding and inflammation of the stomach. The tissue erosion observed was no more than 1/3 of the mucosal thickness (Fig 3).

DISCUSSION

The present study demonstrated a prevention of indomethacin-induced gastric ulceration by C. asiatica extract. The bleeding spots were about 11 times lower when giving the plant extract prior to indomethacin administration. Our results supported the earlier reports that C. asiatica significantly inhibited gastric ulceration induced by cold and restraint stress, ethanol, acetic acid and aspirin.5,9-11 The findings that the doses of C. asiatica used in our study were in between the earlier studies in rats5,10 suggested the differences in plant extract preparations. Terpenoids such as asiatic acid, asiatic acid and madecassic acid as reported

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Animal weight (g)</th>
<th>Number of bleeding spots</th>
<th>Area of bleeding (mm²)</th>
<th>% of bleeding area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indomethacin (20 mg/kg)</td>
<td>306.00±33.66</td>
<td>12.13±5.84</td>
<td>0.15±0.12</td>
<td>0.029±0.024</td>
</tr>
<tr>
<td>C. asiatica (10 mg/kg)</td>
<td>298.59±50.33</td>
<td>0.63±0.52*</td>
<td>0.02±0.02*</td>
<td>0.003±0.003*</td>
</tr>
<tr>
<td>C. asiatica (20 mg/kg)</td>
<td>282.10±53.39</td>
<td>1.00±1.20*</td>
<td>0.02±0.02</td>
<td>0.005±0.005*</td>
</tr>
<tr>
<td>Control (0.1% Tween 80)</td>
<td>292.55±51.82</td>
<td>0.63±0.74*</td>
<td>0.03±0.03</td>
<td>0.004±0.005*</td>
</tr>
</tbody>
</table>

values expressed in term of mean ± SD of eight animals.
* significantly differences from the indomethacin treated group (p<0.001).
Fig 3. Histological features of rat stomach receiving C. asiatica extracts at dose of 10 and 20 mg/kg (A and B) prior to indomethacin administration and 0.1% Tween 80 (C). Arrows showed the erosion of epithelium layers. (M = muscular layer, Sm = submucosa layer, Mm = muscularis mucosae, Lp = lamina propria, E = epithelial layer)

to play roles in wound healing may contribute to the antiulcerative effect of C. asiatica on indomethacin-induced gastric damages.14-15 Therefore, C. asiatica extract has a potential in future development as pharmaceuticals or nutraceutical products for gastric ulcer prevention, according to its safety and traditional consumption.

ACKNOWLEDGEMENTS

This project was supported by the General Research Grant of Khon Kaen University and approved by the Ethics Committee on Animal Experimentation, Faculty of Medicine, Khon Kaen University (AE 006/46). The authors would like to thank the staff of Center for Research and Development of Herbal Health Products for preparing the plant extracts for the study.

REFERENCES