Curcumin Attenuates Hydrogen Peroxide-Induced Cytotoxicity in Human Neuroblastoma SK-N-SH Cells

Rungtip Soi-ampornkul, Ph.D.*, Sandeepa Ghimire, B.Sc.*, Wipawan Thangnipon, Ph.D.**, Nirut Suwanna, D.V.M., Ph.D.***, Chinnavuth Vatanashevanopakorn, M.D., Ph.D.*

*Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, **Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, ***Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand.

ABSTRACT
Objective: Cellular damage induced by oxidative stress has been involved in the development of neurodegeneration. Curcumin, a dietary polyphenol found in the rhizome of Curcuma longa, has been shown, both in vitro and in vivo, to be an effective reactive oxygen scavenging molecule. We investigated an anti-oxidative effect of curcumin against H₂O₂-induced toxicity in human neuroblastoma cell line SK-N-SH.

Methods: The SK-N-SH cells were pre-treated with curcumin 2 hours prior to H₂O₂ treatment. We measured cell viability, intracellular reactive oxygen species (ROS) levels, expression of apoptotic-related proteins and caspase-3 activity 24 hours post H₂O₂-induced cytotoxicity.

Results: Treatment with curcumin at concentrations ranging from 5 to 50 μg/mL was not cytotoxic. Pre-treatment with curcumin at the concentrations of 5 to 50 μg/mL prior to H₂O₂ exposure caused a significant decrease in intracellular ROS levels and a significant increase in cell viability in a dose-dependent manner. Expression of activated form of caspase-3 and BAX, a pro-apoptotic protein, measured by Western blotting were reduced when the SK-N-SH cell line was pre-incubated with curcumin. The curcumin pre-treated cells also exhibited less caspase-3 activity.

Conclusion: Curcumin has protective effects against H₂O₂-induced toxicity in a dose-dependent manner through its anti-apoptotic and anti-oxidative properties in an in vitro H₂O₂-treated SK-N-SH model.

Keywords: Curcumin; apoptosis; anti-oxidant; oxidative stress; SK-N-SH cells (Siriraj Med J 2018;70: 184-190)

INTRODUCTION
Oxidative stress-mediated cellular damage has long been recognized to be a crucial factor in pathophysiology of several neurological disorders, for instance, Alzheimer’s disease, stroke and Parkinson’s disease.4,5 The damage is a result of an imbalance between anti-oxidants and pro-oxidants, which are known as reactive oxygen species (ROS). Super-oxide radical (O₂⁻) and hydrogen peroxide (H₂O₂) are examples of ROS. Excess ROS reacts with DNA, lipids and proteins leading to DNA damage, lipid peroxidation and protein oxidation, respectively. Consequently, cell death via apoptosis is unavoidable.4,5

Curcumin (diferuloylmethane), the most common form of curcuminoids found in the rhizome of Curcuma longa or turmeric, has long been commonly used for culinary purposes.6-8 Beneficial biological properties of curcumin include anti-neoplastic, anti-inflammation, anti-oxidative, and anti-angiogenic properties.6-9 Among these biological properties, its potent anti-oxidative effect is well known. Several investigators have reported the protective effects of curcumin against oxidative stress both in vitro and in vivo. Curcumin reduces rat pheochromocytoma PC12 cell death induced by β-amyloid via a reduction of oxidative stress and DNA damage.10 In the in vitro model of mouse neuroblastoma Neuro-2A cell line, curcumin protects the cells against H₂O₂-induced oxidative stress as determined by a decrease in intracellular ROS and apoptosis.11 These studies indicated that curcumin could

Correspondence to: Chinnavuth Vatanashevanopakorn
E-mail: chinnavuth.vat@mahidol.ac.th
Received 9 January 2018 Revised 21 March 2018 Accepted 2 April 2018
doi:10.14456/smj.2018.31
be used for treatment or prevention of oxidative stress-related diseases. Here we used H$_2$O$_2$-induced cytotoxicity model in human neuroblastoma cell line, the SK-N-SH, to investigate the neuroprotective activity of curcumin.

MATERIALS AND METHODS

Chemicals

Curcumin was purchased from Government Pharmaceutical Organization (GPO), Bangkok, Thailand. Dimethyl sulfoxide (DMSO), H$_2$O$_2$ and DCFH-DA were from Sigma. Apo-ONE® homogenous caspase-3/-7 assay and CellTiter-Blue® cell viability assay were obtained from Promega. Clarity™ Western ECL Blotting substrate kits were purchased from Bio-Rad. Stock solution of curcumin was prepared by dissolving curcumin powder in DMSO at a concentration of 10 mg/mL. Stock curcumin was kept at -20°C until diluted before used.

Cell culture and treatment of curcumin/H$_2$O$_2$

The human neuroblastoma cell line SK-N-SH was purchased from the ATCC (Rockville) and cultivated in complete fibroblast medium (DMEM with 2 mM L-glutamine, 10% v/v fetal bovine serum, 0.1 mM MEM non-essential amino acids, 100 units/mL penicillin and 100 μg/mL streptomycin, and all were from Gibco) in a 37°C incubator with 5% CO$_2$. Passage numbers of the SK-N-SH cells used in this study were between 9 and 39. Cells were maintained for 24 hours before an addition of curcumin at seven different concentrations (5, 10, 15, 20, 25, 50 and 100 μM) for 2 hours. The cells were then treated with 300 μM H$_2$O$_2$ and incubated for 24 hours. The control cells were cultured in complete fibroblast medium without H$_2$O$_2$ and curcumin treatment.

Cell viability

Measurement of cell viability was performed by CellTiter-Blue® cell viability assay. In brief, 25,000 cells were cultured in each well of a 96-well plate and incubated overnight. Curcumin/H$_2$O$_2$ treatment was done as described. Twenty four hours after H$_2$O$_2$ treatment, 5 μL DCFH-DA (a final concentration of 50 μM) was added to each well and incubated for 1 hour, and fluorescence intensity was measured by microplate reader (Synergy HT, BioTek Instrument) using 485 nm and 530 nm as the excitation and emission wavelength, respectively. The fluorescence intensity was proportional to the levels of ROS produced.

Intracellular ROS production

25,000 cells were cultured in each well of a 96-well plate and incubated overnight at 37°C with 5% CO$_2$. Curcumin/H$_2$O$_2$ treatment was done as described. 24 hours after H$_2$O$_2$ treatment, 5 μL DCFH-DA (a final concentration of 50 μM) was added to each well and incubated for 1 hour, and fluorescence intensity was measured by microplate reader (Synergy HT, BioTek Instrument) using 485 nm and 530 nm as the excitation and emission wavelength, respectively. The fluorescence intensity was proportional to the levels of ROS produced.

Assessment of DNA fragmentation by gel electrophoresis

To determine DNA fragmentation in apoptotic cells, 1 x 106 cells were cultured overnight in each well of a 6-well plate. Curcumin/H$_2$O$_2$ treatment was done as described. After 24 hours of incubation, cells were collected and isolation of genomic DNA was done with genomic DNA mini kit (Geneaid) as per the manufacturer’s instruction. Extracted genomic DNA was subjected to gel electrophoresis, and the image was obtained with GelDoc™ EQ (Bio-Rad).

Western blot analysis

1 x 106 cells were cultured overnight in each well of a 6-well plate. Curcumin/H$_2$O$_2$ treatment was done as described. Twenty four hours after H$_2$O$_2$ treatment, medium was then carefully removed and washed once with fresh medium. Cells were lysed in a lysis buffer. After centrifugation of the lysate, protein concentrations were measured by Nanophotometer (Implen). 10% SDS-PAGE was then done with 30 μg protein samples. Proteins were blotted onto a polyvinylidene fluoride membrane (Bio-Rad). Membranes were blocked with 5% non-fat dried milk in TBS for 1 hour before incubating with primary antibodies (rabbit anti-human actin antibody at 1:1,000 dilution, Cell Signaling; rabbit anti-activated human caspase-3 antibody at 1:500 dilution, Cell Signaling; mouse anti-human BAX antibody at 1:500 dilution, Santa Cruz) in 0.1% Tween-20 in TBS at 4°C overnight. The membrane was incubated with secondary antibodies, conjugated with horseradish peroxidase (HRP), against rabbit or mouse (1:1,000, both from Cell Signaling) at room temperature for 1 hour. Membranes were then incubated with Clarity™ Western ECL Blotting substrate (Bio-Rad). Blots were visualized by ImageQuant LAS 4010 (GE Healthcare). Density of bands was quantified using densitometric analysis of ImageJ software (National Institutes of Health).
Measurement of caspase-3/-7 activity

25,000 cells were cultured in each well of a 96-well plate and incubated overnight at 37°C with 5% CO₂. Curcumin/H₂O₂ treatment was done as described. After 24 hours of incubation, medium was discarded and 100 µL of fresh complete fibroblast medium was added into each well. Activity of caspase-3 was assessed by Apo-ONE® homogeneous caspase-3/-7 assay as per manufacturer’s instructions. Briefly, 50 µL caspase-3/-7 reagent was added into the culture and incubated for 1 hour at 37°C and 5% CO₂. Fluorescent signal was then obtained at 521 nm with micro-plate reader (Synergy HT, BioTek Instrument) with the excitation wavelength of 499 nm.

Statistical analysis

Data is presented as the mean ± SEM (n=3). Statistical analysis was by one-way ANOVA, followed by Dennett’s test for comparing between control/H₂O₂-treated and curcumin pre-treated experimental groups which was done with Graphpad Prism version 5 (GraphPad Software). P-value of less than 0.05 was used for determining significant differences.

RESULTS

Cytotoxicity of curcumin on the SK-N-SH cells

We investigated whether curcumin is toxic to the SK-N-SH cells by treating the cells with different concentrations of curcumin (5-100 µg/mL) for 24 hours. Cell viability after treatment with curcumin at the concentration of 5, 10, 15, 20, 25, 50 and 100 µg/mL were 99.1±2.23%, 95.1±2.08%, 97.8±1.37%, 98.3±0.53%, 97.4±2.25%, 94.7±3.35% and 38.8±10.98%, respectively (Fig 1A). The data showed that exposure to curcumin at the concentrations ranging from 5 to 50 µg/mL for 24 hours did not alter cell viability. However, curcumin was toxic at the concentration of 100 µg/mL as demonstrated by a significant reduction of cell viability (one-way ANOVA: F=23.34, p<0.0001; Dunnett’s post-hoc test: p<0.0001 control vs 100 µg/mL curcumin; n=3 for each group). The cytotoxic concentration of curcumin that caused 50% reduction of cell viability (CC50) was 92.045 µg/mL (Fig 1B).

Curcumin protects SK-N-SH cells against H₂O₂-induced toxicity

To test whether curcumin exhibits protective effect against H₂O₂-induced cytotoxicity, we first identified the H₂O₂ concentration that could reduce cell viability by 50% by treating the SK-N-SH cells with various concentrations of H₂O₂. Treatment of H₂O₂ at all tested concentrations showed significantly decreased cell viability (one-way ANOVA: F=68.68, p<0.0001; Dunnett’s post-hoc test: p<0.0001 control vs all H₂O₂ concentrations; n=3 for each group). The reduction of cell viability was in a dose-dependent manner (Table 1 and Fig 2A). From the data, we chose 300 µM H₂O₂, which induced approximately 50% reduction in cell viability, for assessing the protective effect of curcumin.

We then pre-treated the SK-N-SH with different concentrations of curcumin (5, 10, 15, 20, 25, 50 and 100 µg/mL) 2 hours prior to H₂O₂ treatment at a concentration of 300 µM. We found a significant increase in cell viability in curcumin pre-treated cells at all concentrations except 100 µg/mL as compared to the H₂O₂ treated group (Fig 2B, one-way ANOVA: F=30.15, p<0.0001; Dunnett’s post-hoc test: p<0.0001 300 µM H₂O₂ vs 5, 10, 15, 20, 25 and 50 µg/mL curcumin; n=3 for each group). The data indicated that pre-treatment with curcumin at the concentrations ranging from 5 to 50 µg/mL rescued H₂O₂-induced cytotoxicity.
TABLE 1. Concentration-dependent cytotoxicity of H₂O₂ in SK-N-SH cells.

<table>
<thead>
<tr>
<th>H₂O₂ concentration (μM)</th>
<th>Cell viability (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5</td>
<td>62.87±2.17%</td>
</tr>
<tr>
<td>75</td>
<td>59.60±3.95%</td>
</tr>
<tr>
<td>150</td>
<td>56.64±1.92%</td>
</tr>
<tr>
<td>300</td>
<td>52.48±1.21%</td>
</tr>
<tr>
<td>600</td>
<td>49.28±1.32%</td>
</tr>
<tr>
<td>1,200</td>
<td>37.4±4.48%</td>
</tr>
<tr>
<td>2,400</td>
<td>25.56±2.27%</td>
</tr>
</tbody>
</table>

Fig 2. Effect of H₂O₂ on cells viability. (A) Cells were treated with different concentrations of H₂O₂ (37.5, 75, 150, 300, 600, 1,200 and 2400 μM) for 24 hours. Percentage of cell viability was inversely correlated with H₂O₂ concentrations. (B) Protective effect of curcumin on H₂O₂-induced cytotoxicity was demonstrated at 5, 10, 15, 20, 25 and 50 μg/mL concentrations. Pre-treatment of curcumin at 100 μg/mL did not rescue cytotoxicity induced by H₂O₂. ***p<0.001 and ****p<0.0001 compared to the control group, ###p<0.0001 compared to the H₂O₂-treated group. Values are mean±S.E.M. from three independent experiments.

Fig 3. Protective effect of curcumin (5, 10, 15 and 20 μg/mL) on H₂O₂-induced apoptotic DNA fragmentation in SK-N-SH cells. M; DNA ladder.

Curcumin attenuates H₂O₂-induced apoptosis in SK-N-SH cells

DNA fragmentation is one of the observed features in apoptotic cells. If curcumin could potentially inhibit apoptosis in H₂O₂-treated cells, reduction of DNA fragmentation would be evident in cells pre-treated with curcumin prior to H₂O₂ addition. We, thus, performed a gel electrophoresis to see whether the DNA fragmentation could be ameliorated by curcumin (Fig 3). Cells treated with 300 μM H₂O₂ showed a more intense smear pattern compared to the control group. Interestingly, pre-treatment with curcumin at the concentration of 5, 10, 15 and 20 μg/mL dose-dependently decreased the smear. The findings support that H₂O₂-treated cells underwent apoptosis and this could be prevented by pre-treatment with curcumin.

To further investigate the anti-apoptotic property of curcumin, we checked the expression levels of apoptotic-related proteins. Western blotting demonstrated that H₂O₂ treatment triggered an up-regulation of the pro-apoptotic protein BAX to be 166.45±11.99% of the control (Fig 4A; one-way ANOVA: F=16.99, p=0.0002; Dunnett’s post-hoc test: p<0.001; n=3 for each group). Interestingly, pre-treatment of curcumin at the concentration of 5,
Fig 4. Pre-treatment of curcumin decreased levels of pro-apoptotic protein BAX (A) and activated caspase-3 (B). The SK-N-SH cells were pre-treated with 5, 10 or 15 μg/mL curcumin for 2 hours before H$_2$O$_2$ was being added. Western blot analysis of samples 24 hours after H$_2$O$_2$ treatment showed a significant decrease in BAX levels when the cells were pre-treated with curcumin at all concentrations. Activated caspase-3 levels were downregulated only when cells were pretreated with 15 μg/mL curcumin. **p<0.01 and ***p<0.001 compared to the control group, ###p<0.001 compared to the H$_2$O$_2$-treated group. Values are mean ± S.E.M. from three independent experiments.

Fig 5. Reduction of caspase-3/-7 activity in samples pre-treated with curcumin. SK-N-SH cells were pre-treated with curcumin (5, 10, 15 and 20 μg/mL) prior to inducing apoptosis by H$_2$O$_2$. Inhibition of apoptosis by curcumin was demonstrated by a reduction in caspase-3/-7 activity in samples pre-treated with 15 and 20 μg/mL curcumin. ##p<0.01 compared to the H$_2$O$_2$-treated group. Values are mean ± S.E.M. from three independent experiments.

10 and 15 μg/mL prior to H$_2$O$_2$ addition effectively reversed the increase in BAX expression induced by H$_2$O$_2$ (Dunnett’s post-hoc test: p<0.001; n=3 for each group). Likewise, H$_2$O$_2$ treatment induced a significant increase in activated caspase-3 levels compared to control (157.41±9.66%; Fig 4B; one-way ANOVA: F=19.05, p=0.0001; Dunnett’s post-hoc test: p<0.001; n=3 for each group). The increase in activated caspase-3 levels mediated by H$_2$O$_2$ was inhibited by pre-treatment of curcumin at the concentration of 15 μg/mL (Dunnett’s post-hoc test: p<0.001; n=3 for each group).

In addition, we checked whether a reduction in activated caspase-3 levels by curcumin resulted in a decrease in H$_2$O$_2$-induced apoptosis. Thus, the activity of caspase-3/-7 was assessed by Apo-ONE® homogeneous caspase-3/-7 assay. We found that H$_2$O$_2$ treatment caused a rise in caspase-3/-7 activity (135.84±19.85%; Fig 5). Pretreatment of curcumin at the concentrations of 15 and 20 μg/mL prior to an addition of H$_2$O$_2$ significantly reduced caspase-3/-7 activity to 88.17±0.78% and 80.83±2.96%, respectively (Fig 5, one-way ANOVA: F=3.379, p=0.039; Dunnett’s post-hoc test: p<0.01; n=3 for each group). All of the data demonstrated that pre-treatment of curcumin reduced H$_2$O$_2$-induced apoptosis in SK-N-SK cells.

ROS induction by H$_2$O$_2$ can be scavenged by curcumin

To determine whether anti-apoptotic property of curcumin is mediated via a reduction in ROS levels, we measured intracellular ROS levels by DCFH-DA assay. We found that the percentage of ROS levels when the cells were pre-treated with curcumin was significantly decreased compared to H$_2$O$_2$-treated group (Fig 6, one-way ANOVA: F=32.1, p<0.0001; Dunnett’s multiple comparison test: p<0.001; n=3 for each group). The results suggested that the anti-oxidative property of curcumin contributed, in part, to its anti-apoptotic property.

DISCUSSION

Oxidative stress is caused by excessive levels of ROS. Excess ROS leads to damages of cellular components including lipids, proteins and DNAs. Consequently, the damages contribute to pathogenesis of many age-associated and neurodegenerative diseases. Among a great variety of ROS, H$_2$O$_2$ is a major ROS found since it is a...
by-product of aerobic metabolism in mitochondria and peroxisome.9,12 Oxidative damage by H\textsubscript{2}O\textsubscript{2} is normally prevented by catalase, an enzyme that converts H\textsubscript{2}O\textsubscript{2} to water and oxygen.5

Curcumin has long been shown to exhibit a wide range of pharmacological activities, such as anti-inflamation,13 anti-oxidant10-11 and anti-cancer.14 Several in vitro studies reported protective effects of curcumin against oxidative agents in various cell types. For instance, curcumin at a concentration of 10 µg/mL significantly reduced oxidative stress triggered by beta-amyloid in the rat pheochromocytoma PC12 cell line and led to an increase of cell viability.10 An increase in cell viability and an attenuation of apoptosis, a consequence of intracellular ROS reduction, were found when the H\textsubscript{2}O\textsubscript{2}-treated mouse neuroblastoma cell line Neuro-2A was pre-treated with curcumin at 20 and 25 µg/mL.11 Moreover, simultaneously addition of 25-100 µM curcumin and H\textsubscript{2}O\textsubscript{2} protected H\textsubscript{2}O\textsubscript{2}-induced cell damage in the ng108-15 cell culture, a hybrid line between mouse neuroblastoma and rat glioma.11 In our study, we assessed the protective effect of curcumin on H\textsubscript{2}O\textsubscript{2}-induced cytotoxicity in the human neuroblastoma SK-N-SH cell line. Our studies demonstrated that treating the cells with H\textsubscript{2}O\textsubscript{2} caused a reduction in cell viability in a dose-dependent manner. This reduction can be significantly ameliorated by pre-treating the cells with curcumin at six different concentrations (5, 10, 15, 20, 25 and 50 µg/mL). Additional data revealed that pre-treatment of curcumin at the concentration of 5, 10, 15, 20, 25, 50 and 100 µg/mL prior to cytotoxicity induction by H\textsubscript{2}O\textsubscript{2} led to a significant decrease in intracellular ROS levels. Our data was consistent with other studies,10-11 which showed that pre-treatment of curcumin at 10 µg/mL,10 20 µg/mL11 and 25 µg/mL11 prior to an addition of oxidative agents into rodent neural lineage cancer cell lines protected against oxidative agents-induced cytotoxicity.

Reduction of cell viability can be caused by various mechanisms including apoptosis. Previous study reported that curcumin inhibited H\textsubscript{2}O\textsubscript{2}-induced apoptosis in Neuro-2A cells by reducing intracellular ROS levels,10 a finding which we also observed in our study. Thus, we hypothesized that curcumin prevents H\textsubscript{2}O\textsubscript{2}-induced cytotoxicity in part via a reduction in apoptosis. Indeed, we found that curcumin at the concentrations of 5, 10, 15 and 20 µg/mL reduced DNA fragmentation, a characteristic of apoptosis. Expression of the pro-apoptotic protein BAX, which was induced by H\textsubscript{2}O\textsubscript{2} treatment, was significantly decreased when the cells were pre-treated with 5, 10 and 15 µg/mL curcumin. Furthermore, pre-treatment by 15 µg/mL curcumin resulted in a reduction in both the levels of activated caspase-3 and its activity, confirming the anti-apoptotic effect of curcumin. Although caspase-3 activity in cells pre-treated with 5 and 10 µg/mL curcumin was not significantly reduced, viability of cells pre-treated with curcumin at those concentrations was significantly higher than that of H\textsubscript{2}O\textsubscript{2}-treated cells. This indicates that curcumin could also potentially inhibit a reduction in cell viability induced by H\textsubscript{2}O\textsubscript{2} via another mechanism in addition to its anti-apoptotic activity.

It is known that curcumin, at a high concentration, is toxic to the cells.16-18 In the PC12 cell culture model, curcumin concentration of at least 50 µg/mL was able to reduce cell viability by half.10,18 In the present study, we found that addition of 100 µg/mL curcumin dramatically decreased cell viability to 38.88±10.98% compared to untreated control. Several pieces of evidence stated that the cytotoxicity of curcumin at high concentration is mediated via various mechanisms including cell proliferation inhibition and apoptosis induction.19 For instance, curcumin, at high concentration, exhibited negative effect on cell proliferation in a glioma cell line U251.20 High dose curcumin, especially in a presence of transition metal ions such as copper,21,22 triggered oxidative stress and DNA damage, conditions that caused apoptosis, in human hepatoma HepG2 cells.16 Thus, curcumin exerts either anti-apoptotic or pro-apoptotic effects, depending on its concentrations. However, In vivo toxicities of curcumin, would be unlikely since its toxicity levels would never be reached via oral administration.9
CONCLUSION

To summarize, our study showed that curcumin at an optimal concentration (15-20 µg/mL) possessed potent anti-oxidative and anti-apoptotic properties. H₂O₂-induced cytotoxicity in SK-N-SH cell line can be reversed by pre-treating cells with curcumin. Neuroprotective effect of curcumin is mediated in part via an inhibition of intracellular ROS accumulation, which consequently, leads to a reduction in H₂O₂-induced apoptosis as evident by a decrease in levels of pro-apoptotic protein BAX and activated caspase-3 as well as reduced caspase-3 activity. We, therefore, propose that curcumin has great potential for ameliorating neurocytotoxicity induced by H₂O₂. However, further studies such as in vitro study in primary rodent brain slices and human induced pluripotent stem cell-derived neurons are needed for validating the findings in neuroblastoma cell line. Additional in vivo preclinical research, e.g. study in Alzheimer’s disease mouse model, would also be required for addressing pharmacokinetic properties, cytotoxicity, protective effect and, more importantly, neurobehavioral benefits of curcumin in a more relevant context.

ACKNOWLEDGMENTS

This work was supported by Faculty of Medicine Siriraj Hospital, Mahidol University, Grant Number (IO) R015931028. SG is supported by Siriraj Graduate Thesis Scholarship. CV is supported by Chalermphrakiat Grant, Faculty of Medicine Siriraj Hospital, Mahidol University.

REFERENCES