Antiproliferative Effect of Cucurbitacin B Extracted from *Trichosanthes cucumerina* L. on Human Cancer Cell Lines

Tanawan Kummalue, M.D.*, Weena Jiratchariyakul, Dr.rer.nat.**, Totsaporn Srisapoomi, M.S.*, Sathien Sukpanichnant, M.D.*, Toshiro Hara, M.D., Ph.D.***, Kenzaburo Tani, M.D., Ph.D.****

*Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand, **Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Thailand, ***Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Japan, ****Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Japan.

ABSTRACT

Objective: To determine the antiproliferative effect of cucurbitacin B extracted from *Trichosanthes cucumerina* L. on human cancer cell lines.

Methods: Two human lung non-small cell (adenocarcinoma) cancer cell lines i.e., LK87, and QG95, two human colon adenocarcinoma cell lines i.e., HCT15, and HT29, including one renal cancer cell line, A498, and one pancreatic cancer cell line, NOR-P, were used in this study. The viability of cells was assessed by using WST-8 which is based on detection of LDH released from damaged cells and reacts with WST-8 to form a yellow color. Cells were treated with the compound at various concentration from 1 through 100 μg/ml.

Results: The ED50 values (effective doses that are required for 50% inhibition growth of tumor cells) of the compound on human cancer cell lines ranged from approximately 69 μg/ml in HCT15 cells up to 231 μg/ml in QG95 cells. The inhibition of proliferation of this compound on these human cancer cell lines was observed to be in a dose dependent manner.

Conclusion: It could be concluded from this observation that this compound has a modest direct toxic effect to these cell lines with the highest toxic effect on human colon cancer cells.

Keywords: *Trichosanthes cucumerina*, Buap-Khom, cucurbitacin B, human cancer cell lines

Siriraj Med J 2009;61:75-77
E-journal: http://www.sirirajmedj.com

Trichosanthes cucumerina L., named in Thai "Buap-Khom", is a plant in the Cucurbitaceae family which is commonly found in Southeast Asia and Australia. From several reports, plants in this family are composed of many genera accounting for 110 genera and about 640 species which are mostly woody or herbaceous with climbing or trailing stems bearing tendrils and often arising from a tuberous rootstock. In Thailand, this plant wildly grows along the river in some provinces such as Kanjanaburi. For Thai folk medicine, some of them have been used for the properties of antihelmintic, antidiabetic, and anti-inflammatory effects except for *Trichosanthes cucumerina* which is inedible because of the bitter taste inducing nausea and vomiting symptoms. In addition, in other countries, such as India, these special group of plants especially their seeds and fruit have been prescribed to treat various diseases i.e., infections and malignancies. Several investigations have demonstrated the striking cytotoxic activities of these familial plants isolated compounds, cucurbitacins which are the major component, against several human cancer cell lines such as breast and lung cancer cells. In this study, cucurbitacin B was isolated from the juice of the fruit of *Trichosanthes cucumerina* and purified. This compound was tested against several human lung, colon, pancreatic, and renal cancer cell lines which have not previously been investigated.

MATERIALS AND METHODS

Plant extraction process

30 kg of fresh fruit of *Trichosanthes cucumerina* were collected from Kanjanaburi Province. They were immediately pressed and filtered to get the juice. After
ED50 values of human cancer cell lines were obtained. The crystalline mixture was purified by reversed phase column (RP-18) with the solvent system of water and acetonitril (55:45). The major component which comprises cucurbitacin B (mixture with dihydrocucurbitacin B) was gained from this extraction and purification procedure.

Extract preparation
For preparation, 0.0015 gm of the compound was dissolved in 50 μl of 95% ethanol and added up with 950 μl media to get the 1 ml stock. For all the experiment, the stock was diluted with media to get the concentrations at 10, 50, 100, 500, and 1,000 μg/ml. For the final concentrations from 1-100 μg/ml, 10 μl of each prepared diluted compound was added to each well in 96 well plates.

Cell lines and culture
Two human lung non-small cell (adenocarcinoma) cancer cell lines i.e., LK87, and QG95, two human colon adenocarcinoma cell lines i.e., HCT15, and HT29, one renal cancer cell line, A498, and one pancreatic cancer cell line, NOR-P, were used in this study. Human lung cancer cell lines were kindly provided by Dr.Koichi Takayama and Dr.Hiroyuki Inoue, Research Institute of Diseases of the Chest, Kyushu University, Japan. The other cell lines were kindly provided by Dr.Kenzaburo Tani, Medical Institute of Bioregulation, Kyushu University, Japan. All human lung and colon cancer cells were maintained in RPMI1640 (Nacalai Tesque, Kyoto, Japan) except for HT29 colon cancer cell line which was maintained in McCoys 5A (Gibco, USA). Human renal carcinoma cell line was maintained in MEMAlpha (Gibco, USA) and pancreatic cancer cell line was maintained in DMEM (Nacalai Tesque, Kyoto, Japan). All medium were supplemented with 10% fetal bovine serum (Japan Bioserum, Japan) and 1% antibiotic plus antifungal agent (Nacalai Tesque, Kyoto, Japan). All cell lines were incubated at 37°C with 5% CO₂ and humidified atmosphere.

Cell viability assay
Viability of cells was assessed by using WST-8 (Nacalai Tesque, Kyoto, Japan) assay (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt), which is based on detection of LDH releasing from damaged cells and reacts with WST-8 to form a yellow color. In brief, cells were seeded at a density of 1x10⁴ cells/well in 96 well plates and treated with the compound at various concentrations from 1 through 100 μg/ml. Doxorubicin was used as a positive control. After a 48-hour incubation, 10 μl of WST-8 was added to each well and incubated at 37°C with a 5% CO₂ incubator for an additional 4 hours. The absorbance at 450 nm of the dissolved solution was measured by using an Elisa plate reader (ThermoLabsystem, Japan). Data was calculated by using the formula as followed:

\[
\text{Cell death (\%)} = \frac{[(\text{control O.D.}-\text{sample O.D.})/\text{control O.D.}] \times 100}{\text{Cell viability}} = 100-(\% \text{ Cell death})
\]

Statistical analysis
All experiments were performed in triplicate with three experiments. Data were expressed as the mean ± standard deviation. The R square equation was used to calculate the ED50 value. A P-value less than 0.05 were considered statistically significant.

RESULTS
Antiproliferative effects of compound on human cancer cell lines.
The ED50 values (effective doses that are required for 50% inhibition growth of tumor cells) of the compound on human cancer cell lines were summarized in Table 1 ranging from approximately 69 μg/ml in HCT15 cells up to 231 μg/ml in QG95 cells.

The antiproliferative effect, expressed as cell viability, of colon cancer cell lines, HCT15 and HT29, renal cancer cell, A498, and pancreatic cancer cell, NOR-P, showed the modest inhibition by the compound with the ED50 values at 69.391 ± 18.382, 106.431 ± 20.756, 105.912 ± 3.057, and 87.396 ± 1.950 μg/ml respectively as shown in Fig. 1A and 1C. The compound inhibited growth of lung cancer cells, LK87 and QG95, in the modest to low activity with the ED50 values at 99.517 ± 6.116 and 231.830 ± 11.182 μg/ml respectively as illustrated in Fig. 1B. All inhibition of cancer cells by the compound on the proliferation of these human cancer cell lines was observed to be in a dose dependent manner.

DISCUSSION
This investigation of the antiproliferative effects of cucurbitacin B was performed on several human cancer cell lines which have never been previously reported. The biological inhibitory effect of the compound depends not on only healthy or malignant cells but also the difference in the type of cell lines. Comparing in all these cancer cells, this compound has a modest to low activity on human lung cancer cell lines, whereas the inhibitory activity of the compound on other cell lines was in a modest pattern. Therefore, it could be concluded from this observation that this compound has a modest direct toxic effect to these cell lines.

ACKNOWLEDGEMENTS
I would like to thank Professor Dr. Kenzaburo Tani, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Japan, for his kind support. I also gratefully thank Dr.Koichi Takayama and Dr.Hiroyuki Inoue, Research Institute of Diseases of the Chest, Kyushu University, Japan, for kindly providing human lung cancer cell lines. This grant was supported by National Research Council of Thailand (NRCT) and Japan Society of Promotion of Sciences (JSPS).

TABLE 1. ED50 values of human cancer cell lines were demonstrated as mean ± standard deviation.

<table>
<thead>
<tr>
<th>Type of cancer cell line</th>
<th>ED50 value (mean SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon cancer: HCT15</td>
<td>69.391 ± 18.382 μg/ml</td>
</tr>
<tr>
<td>HT29</td>
<td>106.431 ± 20.756 μg/ml</td>
</tr>
<tr>
<td>Renal cancer: A498</td>
<td>105.912 ± 3.057 μg/ml</td>
</tr>
<tr>
<td>Pancreatic cancer: NOR-P</td>
<td>87.396 ± 1.950 μg/ml</td>
</tr>
<tr>
<td>Lung cancer: LK87</td>
<td>99.517 ± 6.116 μg/ml</td>
</tr>
<tr>
<td>QG95</td>
<td>231.830 ± 11.182 μg/ml</td>
</tr>
</tbody>
</table>
REFERENCES

Fig 1. Proliferative inhibition of cucurbitacin B on two colon cancer cell lines, two lung cancer cell lines, one renal cancer cell line and one pancreatic cancer cell line. The cells were seeded at 1x10⁵ cell/well in 96 well plates for 48 hours. HCT15 and HT29 colon cancer cell lines (1A), LK87 and QG95 lung cancer cell lines (1B) A498 renal cancer cell line and NOR-P pancreatic cancer cell line (1C) at different concentrations of 1, 5, 10, 50, 100 and 150 μg/ml for 48 hours. The cell viabilities were determined by MTT assay.